Author: Dehler, M.M.
Paper Title Page
WEPP008
Design of Resonant Stripline BPM for an IR-FEL Project at NSRL  
 
  • X.Y. Liu, B.G. Sun
    USTC/NSRL, Hefei, Anhui, People’s Republic of China
  • M. Bopp, M.M. Dehler, X.Y. Liu, A. Scherer
    PSI, Villigen PSI, Switzerland
 
  Funding: Work supported by the National Science Foundation of China (11575181, 21327901, 11705203); X. Y. Liu was supported by the China Scholarship Council for a 2-year study at PSI (Grant No. 201706340057).
This paper presents the design of a 476MHz resonant stripline beam position monitor (BPM) for an IR-FEL machine at NSRL. This type of BPM was developed based on stripline BPM by moving the coupling feedthrough closer to the short end downstream. This modification introduces a resonance that gives this BPM a better capability to detect lower beam currents compared to broadband devices like button and stripline BPM. Meanwhile, the change is small enough to use the same type of electronics [1-3]. In the following sections, the basic principle, nonlinear effect, sensitivity, the filtered sum and difference signals, and the mechanical design of this BPM will be mainly discussed.
Email address: xiaoyu.liu@psi.ch
 
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPP009
Measurement of Electron Pulse Length at 35 MeV Using a Terahertz Split Ring Resonator  
 
  • X.Y. Liu
    USTC/NSRL, Hefei, Anhui, People’s Republic of China
  • M.M. Dehler, V. Guzenko, R. Ischebeck, X.Y. Liu, C. Lombosi, V. Schlott
    PSI, Villigen PSI, Switzerland
  • T. Feurer, M. Hayati, Z. Ollmann
    Universität Bern, Institute of Applied Physics, Bern, Switzerland
  • V. Georgiadis, D.M. Graham, M.T. Hibberd
    The University of Manchester, The Photon Science Institute, Manchester, United Kingdom
  • A.L. Healy, S.P. Jamison
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
  • D. Lake
    University of Manchester, Manchester, United Kingdom
  • T.H. Pacey
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • D. Rohrbach
    University of Bern, Bern, Switzerland
 
  Funding: This work was supported by the European Union’s Horizon 2020 Research and Innovation Programme (730871). X.Y. Liu was supported by China Scholarship Council for a 2-year study at PSI (201706340057).
The resolution of a streak camera system strongly depends on the slew rate of the deflecting element, which is the product of the amplitude and frequency of the device. An attractive approach towards femtosecond and sub-femtosecond range consists in using terahertz-driven devices, which offer a good combination of high frequency and high gradient-gradients of GV/m have been demonstrated in split ring resonator using pulse created by rectifying ultrashort laser pulses. We present results obtained from a beam experiment at the VELA facility at Daresbury laboratory. We tested a planar resonator derived from the geometry of a split ring resonator with an aperture for the beam of 20 um.
Email address: xiaoyu.liu@psi.ch
 
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)