Author: Gerth, C.
Paper Title Page
Upgraded Bunch Arrival-Time Monitors for the European XFEL Reaching Below 3fs Time Resolution  
  • M.K. Czwalinna, C. Gerth, H. Schlarb, B. Steffen
    DESY, Hamburg, Germany
  Free electron laser facilities, such as the European XFEL and FLASH, have increasingly high demands on the temporal stability of the electron bunches, as pump-probe experiments meanwhile aim for timing stabilities of few femtoseconds residual jitter only. For a beam-based feedback control of the linear accelerator, bunch arrival-time monitors are required that are capable of reaching measurement resolutions better than the stated timing stability goals. We report on our electro-optical bunch arrival-time monitors now achieving a time resolution better than 3 fs. This new level of precision is a first step towards the ultimate goal of reaching sub-femtosecond timing stability. The system has also been upgraded to allow for multi-beam line operation with large variations of the bunch arrival times for the different pulse trains. The characteristics of the bunch arrival-time monitor system and limitations of the state-of-the-art design will be discussed.  
slides icon Slides TUCO03 [2.481 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
TUPP001 KALYPSO: Linear Array Detector with Continuous Read-Out at MHz Frame Rates 266
  • C. Gerth, B. Steffen
    DESY, Hamburg, Germany
  • M. Caselle, L. Rota
    KIT, Karlsruhe, Germany
  • D.R. Makowski, A. Mielczarek
    TUL-DMCS, Łódź, Poland
  The novel linear array detector KALYPSO has been developed for beam diagnostics based on 1-dimensional profile measurements at high-repetition rate free-electron lasers (FEL) and synchrotron radiation facilities. The current version of KALYPSO has 256 pixels with a maximum frame rate of 2.7~MHz. The detector board, which comprises the radiation sensor, analog signal amplification, and analog-to-digital signal conversion, has been designed as a mezzanine card that can be plugged onto application-specific carrier boards for data pre-processing and transmission. Either a Si or InGaAs sensor can be mounted for the detection of visible or near infrared radiation. Results obtained in several beam diagnostics applications at the European XFEL and FLASH are presented to demonstrate the powerful capabilities of the KALYPSO detector.
* The KAYLYPSO detector is a collaboration between the Karlsruhe Institute of Technology, Paul Scherrer Institut, Łódź University of Technology, and Deutsches-Elektronen Synchrotron.
DOI • reference for this paper ※  
About • paper received ※ 04 September 2019       paper accepted ※ 07 September 2019       issue date ※ 10 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)