Author: Krasilnikov, M.
Paper Title Page
TUPP013 Slit-Based Slice Emittance Measurements Optimization at PITZ 313
 
  • R. Niemczyk, P. Boonpornprasert, Y. Chen, J.D. Good, M. Groß, H. Huck, I.I. Isaev, C. Koschitzki, M. Krasilnikov, S. Lal, X. Li, O. Lishilin, G. Loisch, D. Melkumyan, A. Oppelt, H.J. Qian, H. Shaker, G. Shu, F. Stephan, G. Vashchenko
    DESY Zeuthen, Zeuthen, Germany
  • W. Hillert
    University of Hamburg, Institut für Experimentalphysik, Hamburg, Germany
 
  At the Photo Injector Test Facility at DESY in Zeuthen (PITZ) high-brightness electron sources are optimized for use at the X-ray free-electron lasers FLASH and European XFEL. Transverse projected emittance measurements are carried out by a single-slit scan technique in order to suppress space charge effects at an energy of ~20 MeV. Previous slice emittance measurements, which employed the emittance measurement in conjunction with a transverse deflecting structure, suffer from limited time resolution and low signal-to-noise ratio (SNR) due to a long drift space from the mask to the observation screen. Recent experimental studies at PITZ show improvement of the temporal resolution and SNR by utilizing quadrupole magnets between the mask and the screen. The measurement setup is described and first results are shown.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2019-TUPP013  
About • paper received ※ 26 August 2019       paper accepted ※ 09 September 2019       issue date ※ 10 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPP029 Virtual Pepper-Pot Technique for 4D Phase Space Measurements 580
 
  • G.Z. Georgiev, M. Krasilnikov
    DESY Zeuthen, Zeuthen, Germany
 
  A novel method for 4-dimensional transverse beam phase space measurement is proposed at the Photo Injector Test facility at DESY in Zeuthen (PITZ) for ongoing beam coupling studies. This method is called Virtual Pepper-Pot (VPP), because key principles of the pepper-pot mask scheme are applied. The latter approach is of limited use in high-brightness photo injectors, because of technical reasons. At PITZ a slit scan method instead is the standard tool for reconstruction of horizontal and vertical phase spaces. The VPP method extends the slit scan technique with a special post-processing. The 4D transverse phase space is reconstructed from a pepper-pot like pattern that is generated by crossing each measured horizontal slit beamlet with all measured vertical slit beamlets. All elements of the 4D transverse beam matrix are calculated and applied to obtain the 4D transverse emittance, 4D kinematic beam invariant and coupling factors. The proposed technique has been applied to experimental data from the PITZ photo injector optimization for 0.5 nC bunch charge. Details of the VPP technique and results of its application will be discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2019-WEPP029  
About • paper received ※ 03 September 2019       paper accepted ※ 09 September 2019       issue date ※ 10 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)