Author: Krupa, M.
Paper Title Page
MOAO02 Beam Instrumentation and Diagnostics for High Luminosity LHC 1
 
  • M. Krupa
    CERN, Geneva, Switzerland
 
  The High Luminosity LHC projects aims to increase the integrated luminosity of the LHC experiments by an order of magnitude. New and upgraded beam instrumentation is being developed to cope with much brighter beams and to provide the additional novel diagnostics required to assure safe and efficient operation under the new LHC configuration. This contribution discusses the various ongoing developments and reports on the results obtained with prototypes for transverse position, intra-bunch position, transverse size and profile, and beam halo monitoring.  
slides icon Slides MOAO02 [15.308 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2019-MOAO02  
About • paper received ※ 05 September 2019       paper accepted ※ 07 September 2019       issue date ※ 10 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEAO04 Beam Measurements at the CERN SPS Using Interferometric Electro-Optic Pickups 454
 
  • A. Arteche, A. Bosco, S.M. Gibson
    Royal Holloway, University of London, Surrey, United Kingdom
  • S.E. Bashforth, A. Bosco, S.M. Gibson
    JAI, Egham, Surrey, United Kingdom
  • M. Krupa, T. Lefèvre
    CERN, Geneva, Switzerland
 
  Funding: Work supported by UK STFC grants ST/N001583/1, JAI at Royal Holloway University of London and CERN.
Since 2016 a prototype electro-optic pickup has been installed on the SPS as part of the ongoing development of a high bandwidth electro-optic beam position monitor for the High Luminosity LHC. Following the success of initial beam signal observations with the prototype, improvements of the sensitivity and stability of the pickup have become the main focus of the project. A new concept has been developed which uses an interferometric technique to measure the image field of a passing bunch. One arm of an interferometer passes through an electro-optic lithium niobate crystal, embedded in a pickup, whereas the other arm bypasses. The recombination after the pickup results in an interference pattern that changes as a bunch passes by, due to the electro-optic response of the crystal to the image field. This technique enhances the sensitivity to the field and improves control of the working point. Results from high intensity beams at the SPS are presented. These include a comparison between two different interferometric configurations that were tested on different pickups with similar beam conditions. The stability is assessed by frequency scanning interferometry during beam operation.
 
slides icon Slides WEAO04 [52.252 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2019-WEAO04  
About • paper received ※ 10 September 2019       paper accepted ※ 12 September 2019       issue date ※ 10 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPP037 First Measurements of Cherenkov-Diffraction Radiation at Diamond Light Source 619
 
  • D.M. Harryman, P. Karataev
    JAI, Egham, Surrey, United Kingdom
  • M. Apollonio, L. Bobb
    DLS, Oxfordshire, United Kingdom
  • M. Bergamaschi, R. Kieffer, M. Krupa, T. Lefèvre, S. Mazzoni
    CERN, Geneva, Switzerland
  • A. Potylitsyn
    TPU, Tomsk, Russia
 
  Cherenkov Diffraction Radiation (ChDR), appearing when a charged particle moves in the vicinity of a dielectric medium with speed faster than the speed of light inside the medium, is a phenomenon that can be exploited for a range of non-invasive beam diagnostics. By using dielectric radiators that emit photons when in proximity to charged particle beams, one can design devices to measure beam properties such as position, direction and size. The Booster To Storage-ring (BTS) test stand at Diamond Light Source provides a 3 GeV electron beam for diagnostics research. A new vessel string has been installed to allow the BTS test stand to be used to study ChDR diagnostics applicable for both hadron and electron accelerators. This paper will discuss the commissioning of the BTS test stand, as well as exploring the initial results obtained from the ChDR monitor.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2019-WEPP037  
About • paper received ※ 04 September 2019       paper accepted ※ 09 September 2019       issue date ※ 10 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)