Author: Loret, S.
Paper Title Page
MOPP036 SPIRAL2 Diagnostic Qualifications with RFQ beams 189
 
  • C. Jamet, T. Andre, V. Langlois, T. Le Ster, G. Ledu, P. Legallois, S. Leloir, F. Lepoittevin, S. Loret, C. Potier de courcy, R.V. Revenko
    GANIL, Caen, France
 
  The SPIRAL2 accelerator, built on the GANIL’s facility, at CAEN in FRANCE is dedicated to accelerate light and heavy ion beams up to 5mA and 40 MeV. The continuous wave accelerator is based on two ECR ion sources, a RFQ and a superconducting LINAC. The beam commissioning of the RFQ finished at the end of 2018. This paper presents the Diagnostic-Plate installed behind the RFQ, with all associated accelerator diagnostics. Diagnostic monitors, measured beam parameters, results are described and analyzed. A brief presentation of the next steps is given.  
poster icon Poster MOPP036 [1.558 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2019-MOPP036  
About • paper received ※ 03 September 2019       paper accepted ※ 08 September 2019       issue date ※ 10 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPP001 Study and Characterization of SPIRAL2 BPMs 491
 
  • V. Langlois, T. Andre, C. Jamet, G. Ledu, P. Legallois, S. Leloir, F. Lepoittevin, M. Lewitowicz, S. Loret, C. Potier de courcy
    GANIL, Caen, France
 
  The SPIRAL2 facility currently under commissioning at GANIL in France will deliver high-intensity up to 20MeV/n and 5mA light and heavy ions beams. SPIRAL2 beams are accelerated by a Radio Frequency Quadrupole (RFQ) and a LINAC fitted with 20 supraconducting cavities. A tuning of the SPIRAL2 LINAC relies mainly on Pick-up Beam Profile Monitors (BPM). 20 BPM are mounted inside the warm sections between superconducting cavities. They serve to measure a beam transverse position to center the beam, a phase to tune cavities and an ellipticity to adjust beam optics along the LINAC. The phase and ellipticity measurements require high acquisition accuracy of the BPM signals. This paper deals with an analytical study and CST code simulations of the BPM performed in order to compute correction coefficients for the ellipticity measurements. The results of calculations were compared with experimental ones obtained with two BPMs located on a ’diagnostic plate’ after the RFQ . Finally, the BPM acquisition chain was carefully characterized to identify its uncertainties and to ensure that it meets initial specifications.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2019-WEPP001  
About • paper received ※ 04 September 2019       paper accepted ※ 09 September 2019       issue date ※ 10 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)