Author: Penirschke, A.
Paper Title Page
WEPP018 THz Generation by Optical Rectification for a Novel Shot to Shot Synchronization System Between Electron Bunches and Femtosecond Laser Pulses in a Plasma Wakefield Accelerator 548
 
  • S. Mattiello, A. Penirschke
    THM, Friedberg, Germany
  • H. Schlarb
    DESY, Hamburg, Germany
 
  Funding: The work of S. Mattiello is supported by the German Federal Ministry of Education and Research (BMBF) within the Project ’ MAKE-PWA.
We investigate the influence of the optical properties and of the theoretical description of the THz generation on the conversion efficiency of the generation of short THz pulses. The application is a feedback-system for SINBAD with a time resolution of less than 1 fs for the synchronization of the electron bunch and of the plasma wake field in a laser driven plasma particle accelerator*. Here stable THz pulses are generated by optical rectification of a fraction of the plasma generating high energy laser pulses in a nonlinear lithium niobate crystal. Then the generated THz pulses will energy modulate the electron bunches shot to shot before the plasma to achieve the required time resolution. In this contribution we compare different approximations for the modeling of the generation dynamics using second order or first order equations as well as considering pump depletion effects. Additionally, the dependence of the efficiency of the THz generation on the choice of the dielectric function has been investigated.
*The feedback system will be tested at the Accelerator R&D facility SINBAD (Short Innovative Bunches and Accelerators at DESY).
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2019-WEPP018  
About • paper received ※ 04 September 2019       paper accepted ※ 09 September 2019       issue date ※ 10 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPP019 Concept of a Novel High-Bandwidth Arrival Time Monitor for Very Low Charges as a Part of the All-Optical Synchronization System at ELBE 553
 
  • A. Penirschke
    THM, Friedberg, Germany
  • W. Ackermann
    TEMF, TU Darmstadt, Darmstadt, Germany
  • M.K. Czwalinna, H. Schlarb
    DESY, Hamburg, Germany
  • M. Kuntzsch
    HZDR, Dresden, Germany
 
  Funding: This work is supported by the German Federal Ministry of Education and Research (BMBF) under contract no. 05K19RO1.
Numerous advanced applications of X-ray free-electron lasers require pulse durations and time resolutions in the order of only a few femtoseconds or better. The generation of these pulses to be used in time-resolved experiments require synchronization techniques that can simultaneously lock all necessary components to a precision in the range of a few fs only. The CW operated electron accelerator ELBE at the Helmholtzzentrum Dresden Rossendorf uses a all-optical synchronization system to ensure a timing stability on the few 10 fs scale. ELBE requires a minimum beam pipe diameter of 43mm that limits the achievable output voltage of the pickup structure to drive the attached electro-optical modulator. This contribution presents a concept for a novel high-bandwidth arrival time monitor with sufficient output signal for the attached EOMs for very low charges as a part of the all-optical synchronization system at ELBE.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2019-WEPP019  
About • paper received ※ 04 September 2019       paper accepted ※ 10 September 2019       issue date ※ 10 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)