Author: Poggi, M.
Paper Title Page
Overview of LIPAc Beam Instrumentation for the Initial Accelerator Commissioning  
  • D. Jimenez-Rey, J. Castellanos, J.M. García, D. Gavela, A. Ibarra, A. Marqueta, L.M. Martínez, J. Mollá, I. Podadera, A. Ros, R. Varela, V. Villamayor
    CIEMAT, Madrid, Spain
  • P. Abbon, B. Bolzon, T. Chaminade, J.F. Denis, A. Gaget
    CEA-DRF-IRFU, France
  • T. Akagi, K. Kondo, K. Sakamoto, Y. Shimosaki, M. Sugimoto, S. Takahiro
    QST, Aomori, Japan
  • L. Bellan, M. Comunian, E. Fagotti, F. Grespan, M. Poggi, F. Scantamburlo
    INFN/LNL, Legnaro (PD), Italy
  • P. Cara, A. Marqueta
    Fusion for Energy, Garching, Germany
  • Y. Carin, H. Dzitko, A. Jokinen, I.M. Moya
    F4E, Germany
  • J. Marroncle
    CEA-IRFU, Gif-sur-Yvette, France
  • O. Nomen
    IREC, Sant Adria del Besos, Spain
  • A. Rodríguez Páramo
    ESS Bilbao, Zamudio, Spain
  Funding: This work has been supported by the Spanish Government in the frame of the Broader Approach Agreement
The commissioning of the high power deuterium accelerator of Linear IFMIF Prototype Accelerator, LIPAc, is presently under progress. During the so-called Phase B, the accelerator is operating with a high current pulsed proton and deuteron. The Phase B operation has the goals of fulfilling an exhaustive characterization of equipment and machine parameters in pulsed beam operation up to 5 MeV and 125 mA at Low Duty Cycle. The LIPAc beam diagnostics are aimed to demonstrate at this first stage of the commissioning the correct performance of the accelerator and are used for a complete characterization of the accelerator matching and tuning parameters. The characterization and calibration of beam diagnostics developed are providing relevant feedback of the accelerator operation. Measurements of the centroid position, beam profile, energy, intensity or emittance have been acquired and analyzed. The experimental results gathered have been compared with beam dynamics simulations. In this contribution, an overview of the main results provided by the beam diagnostics during Phase B operation in proton will be shown, together with the status of each instrument.
slides icon Slides MOBO03 [13.512 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
WEPP015 ESS Beam Position and Phase Monitor System 536
  • R.A. Baron, H. Hassanzadegan, A. Jansson, H. Kocevar, K.E. Rosengren, T.J. Shea
    ESS, Lund, Sweden
  • I. Bustinduy, S. Varnasseri
    ESS Bilbao, LEIOA, Spain
  • F. Grespan, M. Poggi
    INFN/LNL, Legnaro (PD), Italy
  • T. Gräber
    DESY Zeuthen, Zeuthen, Germany
  • D. Lipka, S. Vilcins
    DESY, Hamburg, Germany
  The European Spallation Source (ESS) is a neutron facility under construction in Lund, Sweden, and established as an European collaboration between different member countries. The machine is a 2 GeV proton LINAC with a nominal beam current of 62.5 mA, 2.86 ms of pulse length and a bunch repetition rate of 352 MHz. The Beam Position and Phase Monitors (BPM) at ESS were designed to satisfy the specifications for the different beam modes, which span from 5 µs pulse length and 6.3 mA beam until the nominal beam condition. The system is designed for standard beam position measurements for beam trajectory correction and for beam phase measurements for cavity phase tuning, imposing restrictions on the sensor design and electronics architecture. Approximately a hundred BPM’s were manufactured and are being installed by partners in collaboration with ESS. The BPM system comprises a MicroTCA.4 electronics based in COTS AMC and RTM modules with custom FPGA firmware implementation and a custom Front-End electronics. In this work, the system architecture, implementation, performance, and test results are presented and discussed.  
DOI • reference for this paper ※  
About • paper received ※ 04 September 2019       paper accepted ※ 09 September 2019       issue date ※ 10 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)