Author: Sun, B.G.
Paper Title Page
WEPP008
Design of Resonant Stripline BPM for an IR-FEL Project at NSRL  
 
  • X.Y. Liu, B.G. Sun
    USTC/NSRL, Hefei, Anhui, People’s Republic of China
  • M. Bopp, M.M. Dehler, X.Y. Liu, A. Scherer
    PSI, Villigen PSI, Switzerland
 
  Funding: Work supported by the National Science Foundation of China (11575181, 21327901, 11705203); X. Y. Liu was supported by the China Scholarship Council for a 2-year study at PSI (Grant No. 201706340057).
This paper presents the design of a 476MHz resonant stripline beam position monitor (BPM) for an IR-FEL machine at NSRL. This type of BPM was developed based on stripline BPM by moving the coupling feedthrough closer to the short end downstream. This modification introduces a resonance that gives this BPM a better capability to detect lower beam currents compared to broadband devices like button and stripline BPM. Meanwhile, the change is small enough to use the same type of electronics [1-3]. In the following sections, the basic principle, nonlinear effect, sensitivity, the filtered sum and difference signals, and the mechanical design of this BPM will be mainly discussed.
Email address: xiaoyu.liu@psi.ch
 
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPP022 A Method of Correcting the Beam Transverse Offset for the Cavity Bunch Length Monitor 565
 
  • Q. Wang, Q. Luo, B.G. Sun
    USTC/NSRL, Hefei, Anhui, People’s Republic of China
 
  Funding: Supported by National Key R&D Program of China (Grant No. 2016YFA0401900 and No. 2016YFA0401903) and The National Natural Science Foundation of China (Grant No. U1832169 and No. 11575181)
Cavity bunch length monitor uses monopole modes excited by bunches within the cavities to measure the bunch longitudinal root mean square (rms) length. It can provide a very high accuracy and high resolution. However, when the bunch passes through the cavities with transverse offset (that is, the bunch moves off the cavity axis), the amplitude of the monopole modes will change and cannot reflect the bunch length precisely. In this paper, a method of correcting the beam transverse offset is proposed. Simulation results show that the method can reduce the error of the bunch length measurement significantly.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2019-WEPP022  
About • paper received ※ 03 September 2019       paper accepted ※ 10 September 2019       issue date ※ 10 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)