Data acquisition and digital architecture
Paper Title Page
TUPP001 KALYPSO: Linear Array Detector with Continuous Read-Out at MHz Frame Rates 266
 
  • C. Gerth, B. Steffen
    DESY, Hamburg, Germany
  • M. Caselle, L. Rota
    KIT, Karlsruhe, Germany
  • D.R. Makowski, A. Mielczarek
    TUL-DMCS, Łódź, Poland
 
  The novel linear array detector KALYPSO has been developed for beam diagnostics based on 1-dimensional profile measurements at high-repetition rate free-electron lasers (FEL) and synchrotron radiation facilities. The current version of KALYPSO has 256 pixels with a maximum frame rate of 2.7~MHz. The detector board, which comprises the radiation sensor, analog signal amplification, and analog-to-digital signal conversion, has been designed as a mezzanine card that can be plugged onto application-specific carrier boards for data pre-processing and transmission. Either a Si or InGaAs sensor can be mounted for the detection of visible or near infrared radiation. Results obtained in several beam diagnostics applications at the European XFEL and FLASH are presented to demonstrate the powerful capabilities of the KALYPSO detector.
* The KAYLYPSO detector is a collaboration between the Karlsruhe Institute of Technology, Paul Scherrer Institut, Łódź University of Technology, and Deutsches-Elektronen Synchrotron.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2019-TUPP001  
About • paper received ※ 04 September 2019       paper accepted ※ 07 September 2019       issue date ※ 10 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPP002 Direct-Sampling Coarse Bunch Arrival Time Monitor in the Free Electron Laser FLASH Based on the Fast Digitizer Implemented in the FMC VITA 57.1 Standard 270
 
  • J. Zink, M.K. Czwalinna, M. Fenner, S. Jabłoński, J. Marjanovic, H. Schlarb
    DESY, Hamburg, Germany
  • F. Gerfers
    Technische Universität Berlin, Berlin, Germany
 
  At the free-electron lasers FLASH and European-XFEL bunch arrival times are monitored with a high-accuracy electro-optical based data acquisition system (BAM). Due to only a couple of picoseconds time measurement range of this system, large timing changes might cause the monitor to fail. To remove any ambiguity and for health status monitoring a high-speed direct-sampling FPGA mezzanine card (FMC) and an analogue RF front-end was added. The circuitry has lower precision than the electro-optical based BAM, but it can determine bunch arrival time with respect to a reference signal over a large time range, i.e. of the order of 1 ms. After restarts or larger energy changes during operation, the electron bunch arrival time may have been changed by tens or even hundreds of picoseconds, which causes that the BAM is out of its operation range and needs to be recalibrated. With the solution developed, the BAM gets the coarse bunch timing from the digitizer and adjusts its optical delay lines accordingly. This allows for finding the operation point fast and automatically. Performance data of the fast direct-sampling digitizer FMC and first measurement data from FLASH will be presented.  
poster icon Poster TUPP002 [3.810 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2019-TUPP002  
About • paper received ※ 04 September 2019       paper accepted ※ 10 September 2019       issue date ※ 10 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPP003 A Common Diagnostic Platform for Elettra 2.0 and FERMI 275
 
  • G. Brajnik, S. Cleva, R. De Monte, D. Giuressi
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
 
  Elettra 2.0 is the project of upgrading the current synchrotron light source to a low emittance machine. In this framework, various components of diagnostics have to be refurbished due to the obsolescence of the same or due to the tight requirements of the new accelerator. In this paper we present a high performance FPGA-based (Altera/Intel Arria 10) digital board developed internally, capable of hosting two FMC modules, equipped with DDR3 ram and 10 Gb/s Ethernet links. The presence of the FMC connectors allows a flexible use of the board: various configurations of A/D and D/A converters (different number of channels, resolution, sampling rate) can be obtained, also with various I/O ports for trigger and synchronisation. These features make it applicable as a base platform for various applications not only for Elettra (electron and photon BPMs, DLLRF systems, etc.) but also for Fermi (cavity BPMs, bunch arrival monitor, link stabiliser). The peripherals on board have been fully debugged, and probably a new version with a SoC (System on Chip) will be released in the next future.  
poster icon Poster TUPP003 [1.586 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2019-TUPP003  
About • paper received ※ 02 September 2019       paper accepted ※ 08 September 2019       issue date ※ 10 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPP004 High-Speed Beam Signal Processor for SHINE 278
 
  • L.W. Lai, Y.B. Leng
    SSRF, Shanghai, People’s Republic of China
 
  A CW hard X-ray FEL is under construction in SSRF, which pulse rate is designed to 1MHz. A new high-speed sampling BPM signal processor is under development to meet the high performance requirements of beam position measurement system. The processor’s sampling rate can be up to 500MHz, and beam position information of each bunch (1MHz rate) can be retrieved with the power of FPGA. Time stamp is aligned with the position data for offline analysis. The processor is designed to be a common signal processing platform for beam diagnostics. The first application is cavity BPM, and other applications, including button BPM, stripline BPM, and even wire scanner processor will be developed based on this platform. At the same time, a RF direct sampling processor is designed for cavity BPM signal processing. This novel technology will greatly simplify the cavity BPM electronic system, and make the system design more efficient and more flexible.  
poster icon Poster TUPP004 [0.983 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2019-TUPP004  
About • paper received ※ 04 September 2019       paper accepted ※ 07 September 2019       issue date ※ 10 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPP005 PLC Based Flexible and Scalable Vacuum Control at the Argonne Tandem Linear Accelerator System (ATLAS) 280
 
  • Y. Luo, D.G. Bilbrough, C. Dickerson, A.E. Germain, M.R. Hendricks, C.E. Peters, S.I. Sharamentov
    ANL, Lemont, Illinois, USA
 
  Funding: This work was supported by the U.S. Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357. This research used resources of ANL’s ATLAS facility, a DOE Office.
The beamline sections of an accelerator and different ion sources require a vacuum system capable of providing pressures down to 10-10 Torr. To control, monitor, and provide interlock protection of the vacuum equipment, a PLC-based vacuum control system was developed and tested at the Argonne Tandem Linear Accelerator (ATLAS). This system was designed to be highly flexible and scalable to meet the variety of equipment and configurations at ATLAS. The current FGPA-based system is reliable and fast, but is very difficult to maintain and upgrade. Particular attention was paid to the signal distribution to promote standard cable connections, minimize the usage of terminal blocks, and reduce the time to troubleshoot problematic channels. The system monitors the status of fast acting relays for interlock or control purposes, and utilizes RS-485 communication to gather lower priority information such as pump speeds or vacuum pressure readouts. The vacuum levels are monitored to interlock the high voltages of some beam instruments to protect against sparks as the Paschen minimum is approached. This paper mainly presents work on hardware interface to various vacuum devices.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2019-TUPP005  
About • paper received ※ 30 August 2019       paper accepted ※ 07 September 2019       issue date ※ 10 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEBO01
Generic Hardware, Firmware and Embedded Software Platforms for Particle Accelerators  
 
  • B. Keil
    PSI, Villigen PSI, Switzerland
 
  In the last decades, the architecture of electronics, firmware and embedded software for beam instrumentation and accelerator feedback systems has migrated from rather system specific designs towards more generic solutions, where different systems can share quite a large amount of common components. This conference contribution gives an overview of generic design approaches, platforms and related technology being used today, and provides an outlook on future developments and trends. Topics and technologies discussed include design crate and hardware standards, development tools and languages, multi-gigabit communication protocols, FPGAs, multiprocessor system-on-chip (MPSoC), RF system-on-chip (RFSoC), and adaptive compute acceleration platforms (ACAPs). Some examples of existing and future applications are also presented.  
slides icon Slides WEBO01 [3.875 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEBO02 MicroTCA.4 at Sirius and a Closer Look into the Community 459
 
  • D.O. Tavares, G.B.M. Bruno, S.R. Marques, L.M. Russo, H.A. Silva
    LNLS, Campinas, Brazil
 
  More and more facilities have been adopting MicroTCA.4 as the standard for new electronics. Despite the advertised advantages in terms of system manageability, high availability, backplane performance and supply of high quality COTS modules by industry, the standard still lacks a greater acceptance in the accelerators community. This paper reports on the deployment of MicroTCA.4 systems at Sirius light source, which comprised the development and manufacturing of several open hardware modules, development of a generic gateware/software framework and re-implementation of MMC IPMI firmware as an open source project. A special focus will be given to the difficulties found, unforeseen expansions of the system and general architectural aspects. Based on this experience and on a survey carried out among other MicroTCA.4 adopters, the perceived strengths and weaknesses of the standard will be discussed and a tentative outlook on how it could be evolved to better suit the accelerators community will be presented.  
slides icon Slides WEBO02 [34.322 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2019-WEBO02  
About • paper received ※ 05 September 2019       paper accepted ※ 07 September 2019       issue date ※ 10 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEBO04 Enhancement of the S-DALINAC Control System with Machine Learning Methods 473
 
  • J.H. Hanten, M. Arnold, J. Birkhan, C. Caliari, N. Pietralla, M. Steinhorst
    TU Darmstadt, Darmstadt, Germany
 
  Funding: *Work supported by DFG through GRK 2128
For the EPICS-based control system of the superconducting Darmstadt electron linear accelerator S-DALINAC**, supporting infrastructures based on machine learning are currently developed. The most important support for the operators is to assist the beam setup and controlling with reinforcement learning using artificial neural networks. A particle accelerator has a very large parameter space with often hidden relationships between them. Therefore neural networks are a suited instrument to use for approximating the needed value function which represents the value of a certain action in a certain state. Different neural network structures and their training with reinforcement learning are currently tested with simulations. Also there are different candidates for the reinforcement learning algorithms such as Deep-Q-Networks (DQN) or Deep-Deterministic-Policy-Gradient (DDPG). In this contribution the concept and first results will be presented.
**N. Pietralla, Nuclear Physics News, Vol. 28, No.2, 4 (2018)
 
slides icon Slides WEBO04 [2.073 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2019-WEBO04  
About • paper received ※ 03 September 2019       paper accepted ※ 09 September 2019       issue date ※ 10 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)