Keyword: coupling
Paper Title Other Keywords Page
MOPP008 First Measurements of a New Type of Coreless Cryogenic Current Comparators (4C) for Non-Destructive Intensity Diagnostics of Charged Particles pick-up, shielding, cryogenics, niobium 81
 
  • V. Tympel, T. Stöhlker
    HIJ, Jena, Germany
  • S. Anders, J. Kunert, M. Schmelz, R. Stolz, V. Zakosarenko
    IPHT, Jena, Germany
  • H. De Gersem, N. Marsic, W.F.O. Müller
    TEMF, TU Darmstadt, Darmstadt, Germany
  • J. Golm, F. Schmidl, T. Schönau, P. Seidel, M. Stapelfeld
    FSU Jena, Jena, Germany
  • D.M. Haider, M. Schwickert, T. Sieber, T. Stöhlker
    GSI, Darmstadt, Germany
  • T. Stöhlker
    IOQ, Jena, Germany
  • J. Tan
    CERN, Geneva, Switzerland
  • V. Zakosarenko
    Supracon AG, Jena, Germany
 
  Funding: Supported by the BMBF, project numbers 05P15SJRBA, 05P18RDRB1 and 05P18SJRB1.
The non-destructive and highly sensitive measurement of a charged particle beam is of utmost importance for modern particle accelerator facilities. A Cryogenic Current Comparator (CCC) can be used to measure beam currents in the nA-range. Therein, charged particles passing through a superconducting toroid induce screening currents at the surface of the toroid, which are measured via SQUIDs. Classical CCC beam monitors make use of a high magnetic permeability core as a flux-concentrator for the pickup coil. The core increases the pickup inductance and thus coupling to the beam, but unfortunately also raises low-frequency noise and thermal drift. In the new concept from the Leibniz Institute of Photonic Technology the Coreless Cryogenic Current Comparator (4C) completely omits this core and instead uses highly sensitive SQUIDs featuring sub-micron cross-type Josephson tunnel junctions. Combined with a new shielding geometry a compact and comparably lightweight design has been developed, which exhibits a current sensitivity of about 6 pA/sqrt(Hz) in the white noise region and a measured shielding factor of about 134 dB*.
* V. Zakosarenko et al., Coreless SQUID-based cryogenic current comparator for non-destructive intensity diagnostics of charged particle beams, Supercond. Sci. Technol. 32 (2019) 014002.
 
poster icon Poster MOPP008 [13.550 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2019-MOPP008  
About • paper received ※ 04 September 2019       paper accepted ※ 08 September 2019       issue date ※ 10 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPP029 Stripline-based Non-destructive Beam Profile Monitoring System for Muon g-2/EDM Experiment at J-PARC multipole, quadrupole, dipole, monitoring 372
 
  • C.K. Sung, M. Chung
    UNIST, Ulsan, Republic of Korea
  • S. Hacıömeroğlu
    IBS, Daejeon, Republic of Korea
  • Y.K. Semertzidis
    CAPP/IBS, Daejeon, Republic of Korea
  • Y.K. Semertzidis
    KAIST, Daejeon, Republic of Korea
 
  The muon g-2/EDM experiment at J-PARC aims to measure the muon magnetic moment anomaly, a and electric dipole moment, d by introducing an approach excluding any electric field with measurement goal of 450 and 70 ppb for statistical and systematic uncertainty of a , respectively, and sensitivity of 1.5·10-21 e’cm for d. In order to achieve the precision, the beam needs to manipulated such that the X and Y components are coupled by means of skew quadrupole magnets through the transmission line. The XY coupling quality can affect the transmission and storage efficiency so that its failure causes systematic error. Since it is significant to monitor the XY coupling status during the beam operation, a non-destructive beam profile monitoring system is under development to investigate the XY coupling quality so as to reduce the source of systematic uncertainties. The device consists of stripline electrodes installed with 45 deg. rotational symmetry. It will reconstruct the coupling parameters such as skew angle and beam size by using the FFT-based algorithm. This work presents the simulation result on the reconstruction and the wire test result for the prototype device.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2019-TUPP029  
About • paper received ※ 04 September 2019       paper accepted ※ 10 September 2019       issue date ※ 10 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPP010 Design and Simulation of a Cavity BPM for HUST Proton Therapy Facility cavity, proton, simulation, diagnostics 523
 
  • J.Q. Li, Q.S. Chen, K. Tang, P. Tian
    HUST, Wuhan, People’s Republic of China
  • K. Fan
    Huazhong University of Science and Technology, State Key Laboratory of Advanced Electromagnetic Engineering and Technology,, Hubei, People’s Republic of China
 
  In proton therapy facility, non-destructive beam diagnostic devices are essential for on-line measurement during the patient treatment. To meet the clinical requirement, the beam current becomes ultra-low of the order of nano-ampere, which is a great challenge to non-destructive beam diagnostics because of the extremely low signal level. Compared with conventional non-destructive beam diagnostic devices, the cavity beam position monitor (BPM) has a high shunt impedance to get enough power levels, so a cavity BPM system is designed for HUST-PTF. It is made up of two resonant cavities called reference cavity and position cavity, respectively. Both cavities are simulated and optimized by CST Microwave Studio and Particle Studio. Finally, the electronics of cavity BPM we plan to use is shown.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2019-WEPP010  
About • paper received ※ 03 September 2019       paper accepted ※ 07 September 2019       issue date ※ 10 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPP029 Virtual Pepper-Pot Technique for 4D Phase Space Measurements emittance, gun, quadrupole, electron 580
 
  • G.Z. Georgiev, M. Krasilnikov
    DESY Zeuthen, Zeuthen, Germany
 
  A novel method for 4-dimensional transverse beam phase space measurement is proposed at the Photo Injector Test facility at DESY in Zeuthen (PITZ) for ongoing beam coupling studies. This method is called Virtual Pepper-Pot (VPP), because key principles of the pepper-pot mask scheme are applied. The latter approach is of limited use in high-brightness photo injectors, because of technical reasons. At PITZ a slit scan method instead is the standard tool for reconstruction of horizontal and vertical phase spaces. The VPP method extends the slit scan technique with a special post-processing. The 4D transverse phase space is reconstructed from a pepper-pot like pattern that is generated by crossing each measured horizontal slit beamlet with all measured vertical slit beamlets. All elements of the 4D transverse beam matrix are calculated and applied to obtain the 4D transverse emittance, 4D kinematic beam invariant and coupling factors. The proposed technique has been applied to experimental data from the PITZ photo injector optimization for 0.5 nC bunch charge. Details of the VPP technique and results of its application will be discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2019-WEPP029  
About • paper received ※ 03 September 2019       paper accepted ※ 09 September 2019       issue date ※ 10 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPP030 Betatron Phase Advance Measurements Using the Gated Turn-by-turn Monitors at SuperKEKB betatron, luminosity, detector, closed-orbit 585
 
  • G. Mitsuka, K. Mori, M. Tobiyama
    KEK, Ibaraki, Japan
 
  In the SuperKEKB commissioning Phases 2 (Feb.-Jul., 2018) and 3 (from Mar. 2019), the betatron phase advances between adjacent beam position monitors have been measured using a total of 138 gated turn-by-turn monitors. A fast RF gating of the monitors enables turn-by-turn beam position detections by focusing only on an artificially-excited non-colliding bunch, while leaving colliding bunches unaffected. Betatron phase advances measured by the gated turn-by-turn monitors and accordingly obtained betatron functions were consistent with the closed orbit measurements. High signal-to-noise ratio were achieved by advanced signal extraction methods such as NAFF, SVD, and independent component analysis.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2019-WEPP030  
About • paper received ※ 03 September 2019       paper accepted ※ 10 September 2019       issue date ※ 10 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)