Keyword: cyclotron
Paper Title Other Keywords Page
MOPP013 Faraday Cup Selector for DC-280 Cyclotron diagnostics, controls, LabView, ECR 102
  • V.V. Aleinikov, S. Pachtchenko
    JINR, Dubna, Moscow Region, Russia
  • K.P. Sychev, V. Zabanova
    JINR/FLNR, Moscow region, Russia
  New isochronous cyclotron DC-280, the basic facility of Super Heavy Element (SHE) factory was put into operation in the FLNR JINR on March 25, 2019. Key role in beam diagnostics for lossless transportation is played by Faraday cups. Five elements were installed along the two injection lines, and 12 elements on the five transport channels to the experimental facilities. The software was developed to automatically select the active Faraday cup depending on its location and track the current on a single indicator. This paper describes basic principles and algorithm of the Faraday cup Selector module which is a part of the DC-280 cyclotron control system.  
poster icon Poster MOPP013 [2.214 MB]  
DOI • reference for this paper ※  
About • paper received ※ 27 August 2019       paper accepted ※ 08 September 2019       issue date ※ 10 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
TUPP022 Development of the Calculation Method of Injection Beam Trajectory of RIKEN AVF Cyclotron with 4D Emittance Measured by the Developed Pepper-Pot Emittance Monitor emittance, space-charge, injection, ECR 346
  • Y. Kotaka, N. Imai, Y. Ohshiro, Y. Sakemi, S. Shimoura, H. Yamaguchi
    CNS, Saitama, Japan
  • A. Goto, M. Kase, T. Nagatomo, T. Nakagawa, J. Ohnishi
    RIKEN Nishina Center, Wako, Japan
  • K. Hatanaka
    RCNP, Osaka, Japan
  • H. Muto
    Suwa University of Science, Chino, Nagano, Japan
  The Center for Nuclear Study, the University of Tokyo and RIKEN Nishina Center have been developing the AVF Cyclotron system at RIKEN. One of the important developments is to improve the transport system of the injection beam line. The transport efficiencies tend to decrease as beam intensities increase. To solve this problem, we developed the calculation method to trace a beam trajectory with a four-dimensional (4D) beam emittance measured by pepper-pot emittance monitor (PEM) as initial value. The reason for using the 4D beam emittance is that the transport system has rotating quadrupole magnets and solenoid coils, and that the space charge effect can be introduced. The beams through a pepper-pot mask can be detected on the potassium bromide fluorescent plate inclined 45 degree to the beam to be recorded by digital camera using developed PEM. We compared the calculated beam trajectory with the measurement of other beam diagnostics and quantified the degree of fit. It has been found that the degree of fit is improved by changing fiducial points on the fluorescent plate and optimizing the thickness of the fluorescent agent and the exposure time and gain of the digital camera.  
DOI • reference for this paper ※  
About • paper received ※ 04 September 2019       paper accepted ※ 10 September 2019       issue date ※ 10 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
WEPP007 Calibration for Beam Energy Position Monitor System for Riken Superconducting Acceleration Cavity network, linac, impedance, synchrotron 519
  • T. Watanabe, M. Fujimaki, N. Fukunishi, H. Imao, O. Kamigaito, N. Sakamoto, Y. Watanabe, K. Yamada
    RIKEN Nishina Center, Wako, Japan
  • K. Hanamura, T. Kawachi
    Mitsubishi Electric System & Service Co., Ltd, Tsukuba, Japan
  • A. Kamoshida
    National Instruments Japan Corporation, MInato-ku, Tokyo, Japan
  • R. Koyama
    SHI Accelerator Service Ltd., Tokyo, Japan
  • A. Miura
    JAEA/J-PARC, Tokai-mura, Japan
  • T. Miyao, T. Toyama
    KEK, Ibaraki, Japan
  Upgrades for the RIKEN Heavy-ion Linac (RILAC) involving a new Superconducting Linac (SRILAC) are currently underway to promote super-heavy element searches and Radio Isotope (RI) production (211At) for medical use at the RIKEN radioactive isotope beam factory (RIBF). If destructive monitors are used, since they generate outgassing, it becomes difficult to maintain the Q value and surface resistance indicating the performance of the superconducting radio frequency (SRF) cavities over a long period of time. Therefore it is crucially important to develop nondestructive beam measurement diagnostics. We have developed a beam energy position monitor (BEPM) system which can measure not only the beam position but also the beam energy simultaneously by measuring the time of flight of the beam. By using parabolic cut, ideal linear response of the quadrupole moments is realized, keeping a good linear position sensitivity at the same time. We fabricated 11 BEPMs and the position calibration system employing a wire method has been used to obtain the sensitivity and offset of BEPMs. We will describe details concerning the BEPM, calibration system and measured results.  
DOI • reference for this paper ※  
About • paper received ※ 05 September 2019       paper accepted ※ 10 September 2019       issue date ※ 10 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)