Keyword: GUI
Paper Title Other Keywords Page
MOPP047 Design and Development of Beam Diagnostics for an FFA-FFA Ring for ISIS-II Upgrade Studies vacuum, detector, simulation, proton 215
 
  • E. Yamakawa
    JAI, Oxford, United Kingdom
  • S. Machida, A. Pertica, C.C. Wilcox
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
 
  The ISIS-II project aims to deliver a new spallation neu- tron source by 2034, driven by a 1.2 GeV proton accelerator capable of delivering a beam power of 1.25 MW with a rep- etition rate of 50 Hz or higher. One of the options for this future accelerator is a Fixed Field alternating gradient Accelerator (FFA). To demonstrate the suitability of FFAs for use in a user facility such as ISIS, there is a plan to construct a smaller scale proof of concept machine: FETS-FFA. Developing beam diagnostics for the FETS-FFA ring presents a challenge due to a large orbit excursion and aperture ( 60 mm x 700 mm). Diagnostics must cover the full size of beam chamber whilst still providing measurement sensitivity and resolution comparable to that seen in the ISIS synchrotron. This paper presents the current design and development of beam diagnostics for the FETS-FFA ring, including finite element studies of Beam Position Monitors (BPMs) and Ionisation Profile Monitors (IPMs).  
poster icon Poster MOPP047 [9.355 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2019-MOPP047  
About • paper received ※ 03 September 2019       paper accepted ※ 07 September 2019       issue date ※ 10 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUBO01 Screen materials for high precision measurements electron, site, embedded, software 1
 
  • B. Walasek-Höhne, P. Forck
    GSI, Darmstadt, Germany
  • R. Ischebeck
    PSI, Villigen PSI, Switzerland
  • G. Kube
    DESY, Hamburg, Germany
 
  Funding: This project has received funding from the European Union’s Horizon 2020 programme under Grant Agreement No 730871.
Scintillation screens made of various inorganic materials are widely used for transverse beam profile diagnostics at all kinds of accelerators. The monitor principle is based on the particles’ energy loss and its conversion to visible light. The resulting light spot is a direct image of the two-dimensional beam distribution. For large beam sizes standard optical techniques can be applied, while for small beam sizes dedicated optical arrangements have to be used to prevent for image deformations. In the modern linac based light sources scintillator usage serves as an alternative way to overcome limitations related to coherent OTR emission. Radiation damages and intensity based saturation effects, in dependence of the screen material, have to be modelled. In this talk, an introduction to the scintillation mechanism in inorganic materials will be given including practical demands and limitations. An overview on actual applications at hadron and electron accelerators will be discussed as summary of the Joint ARIES-ADA Workshop on ’Scintillation Screens and Optical Technology for transverse Profile Measurements’ held in Kraków, Poland.
 
slides icon Slides TUBO01 [27.172 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPP020 Development of a Gated IPM System for J-PARC MR electron, detector, operation, impedance 338
 
  • K. Satou
    J-PARC, KEK & JAEA, Ibaraki-ken, Japan
 
  In the Main Ring (MR) of Japan Proton Accelerator Research Complex (J-PARC), a residual-gas ionization profile monitor (IPM) is used to measure bunched beam profiles. After injection, the beam widths of the first ~20 bunched beams are analysed to correct the Quadruple oscillation. While only a few dozen profiles are required for this correction, the present IPM auto-matically measures all bunched beams, more than 2·106 bunches from injection to the extraction, because the present IPM operates using DC. This system is unde-sirable due to the limited lifetime of the Micro Channel Plate (MCP) detector; the more particles the MCP senses, the more it loses gain flatness and thus lifetime. To improve this situation, a gated IPM system has been developed, in which the High Voltage (HV) is operated in pulse mode. Results of performance analysis of a new HV power supply, improvement of the electrodes, and particle-tracking simulation considering the space-charge-electric field of the bunched beam are de-scribed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2019-TUPP020  
About • paper received ※ 04 September 2019       paper accepted ※ 08 September 2019       issue date ※ 10 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)