Keyword: ion-source
Paper Title Other Keywords Page
MOPP025 Enhancements to the SNS* Differential Current Monitor to Minimize Errant Beam cavity, linac, controls, real-time 145
 
  • W. Blokland
    ORNL, Oak Ridge, Tennessee, USA
  • C.C. Peters, T.B. Southern
    ORNL RAD, Oak Ridge, Tennessee, USA
 
  Funding: This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy.
The existing Differential Beam Current Monitor (DBCM) has been modified to not only compare beam current waveforms between upstream and downstream locations, but also to compare the previous beam current waveform with the incoming beam current waveform. When there is an unintended change in the beam current, the DBCM now aborts the beam to prevent beam loss on the next pulse. This addition has proved to be crucial to allow beam during specific front-end problems. All data is saved when an abort is issued for post-mortem analy-sis. This paper describes the additions to the implementa-tion, our operational experience, and future plans for the differential beam current monitor.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2019-MOPP025  
About • paper received ※ 04 September 2019       paper accepted ※ 10 September 2019       issue date ※ 10 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPP015 Wire Scanner Diagnostic System controls, software, diagnostics, hardware 321
 
  • S. Grulja, S. Cleva, R. De Monte, M. Ferianis
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
 
  Elettra Sincrotrone Trieste Research Center (Elettra) is one of the Italian Institutions, together with Istituto Nazionale di Fisica Nucleare (INFN) and Consiglio Nazionale delle Ricerche (CNR), committed to the realization of the Italian in-kind contributions for the European Spallation Source. One part of the Elettra in-kind contributions to the proton accelerator is the construction of acquisition system for ESS Wire Scanner (WS).This paper presents an overview of the diagnostic system of the ESS Wire Scanner, including the first measurements with beam performed at CERN on LINAC4.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2019-TUPP015  
About • paper received ※ 04 September 2019       paper accepted ※ 07 September 2019       issue date ※ 10 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPP032 Beam Based Alignment of Elements and Source at the ESS Low Energy Beam Transport Line solenoid, LEBT, simulation, MMI 594
 
  • N. Milas, M. Eshraqi, B. Gålander, Y. Levinsen, R. Miyamoto, E. Nilsson, D.C. Plostinar
    ESS, Lund, Sweden
 
  The European Spallation Source (ESS), currently under construction in Lund, Sweden, will be the world’s most powerful linear accelerator driving a neutron spallation source, with an average power of 5 MW at 2.0 GeV. The first protons were accelerated at the ESS site during the commissioning of the ion source and low energy beam transport (LEBT), that started in September 2018 and ran until July 2019. Misalignments of the elements in the LEBT can have a strong impact on the final current transmission of the low energy part. In this paper, we present a way to isolate and measure tilts of the elements and the initial centroid divergence of the source. We also present initial test measurements for the ESS LEBT and discuss how to extend the method to other facilities.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2019-WEPP032  
About • paper received ※ 04 September 2019       paper accepted ※ 10 September 2019       issue date ※ 10 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)