Keyword: photon
Paper Title Other Keywords Page
MOPP016 Particle interactions with diamond detectors neutron, detector, site, electron 114
 
  • C. Weiss, M. Cerv, E. Griesmayer, P. Kavrigin
    CIVIDEC Instrumentation, Wien, Austria
 
  Chemical vapor deposition (CVD) diamond as radiation detector material has a wide range of applications, in par- ticular for harsh radiation environments and at high tem- peratures. The sensitivity of diamond is exploited in meas- urements with charged particles, neutrons and photons. Diamond detectors are used as beam loss monitors in particle accelerators, for photon detection in Synchrotron Light Sources, for neutron diagnostics in thermal neutron fields and for Deuterium-Deuterium (D-D) fusion and Deuterium-Tritium (D-T) fusion plasma neutrons. In this paper we present the simulated and measured re- sponse functions of single-crystal (sCVD) diamond detec- tors to charged particles, heavy ions, thermal neutrons, fast neutrons, X-rays and gamma radiation. All measurements were performed with CIVIDEC diamond detectors and re- lated electronics [1] at various research facilities.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2019-MOPP016  
About • paper received ※ 09 September 2019       paper accepted ※ 10 September 2019       issue date ※ 10 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPP020 First Tests Using Sipm Based Beam Loss Monitors at the European XFEL FEL, undulator, detector, radiation 126
 
  • T. Wamsat, P.A. Smirnov
    DESY, Hamburg, Germany
 
  The European XFEL MTCA based Beam Loss Monitor System (BLM) is composed of about 450 monitors using photomultiplier tubes (PMTs). BLMs installed in the SASE undulator intersections show high signals at electron energy higher 16 GeV or photon energy higher 14 keV due to background synchrotron radiation which directly affects the PMT. The amplitude of this signal can get that high that, also without using any scintillating material, the BLMs get blind for real losses. Also different lead arrangements did not shield the signal sufficiently. First tests show that a Silicon photomultiplier (SiPM) is not affected. Also there are several advantages to use SiPM, they are cheaper by factor of 40 and operating voltage is below 45V. First test will be presented and how it can get implemented in the existing BLMs and BLM system.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2019-MOPP020  
About • paper received ※ 04 September 2019       paper accepted ※ 08 September 2019       issue date ※ 10 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPP030 Preliminary Test of XBPM Local Feedback in TPS feedback, electron, operation, synchrotron 162
 
  • P.C. Chiu, J.-Y. Chuang, K.T. Hsu, K.H. Hu, C.H. Huang
    NSRRC, Hsinchu, Taiwan
 
  TPS is 3-GeV synchrotron light source which have opened for public users since September 2016 and now offers 400 mA top-up mode operation. The requirements of the long term orbit stability have been gradually more and more stringent. The report investigates the long-term orbit stability improved by applying local XBPM feedback.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2019-MOPP030  
About • paper received ※ 02 September 2019       paper accepted ※ 09 September 2019       issue date ※ 10 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPP024 Development of a Beam Induced Fluorescence Monitor for Non-Destructively Profiling MW Proton Beam at the J-PARC Neutrino Beamline injection, proton, vacuum, simulation 353
 
  • S.V. Cao, M.L. Friend, K. Sakashita
    KEK, Tsukuba, Japan
  • M. Hartz
    Kavli IPMU, Kashiwa, Japan
  • A. Nakamura
    Okayama University, Okayama, Japan
 
  A Beam Induced Fluorescence (BIF) monitor is under development for non-destructively monitoring the future MW-power proton beam at the neutrino extraction beamline at J-PARC. The §I{30}{GeV} protons are bombarded onto a graphite target, producing one of the most intense neutrino beams in the world for the Tokai-to-Kamioka (T2K) long-baseline neutrino oscillation experiment, where beam profile monitoring is essential for protecting beamline equipment and understanding the neutrino flux. For the BIF monitor, gas is injected into the beam pipe and the spatial distribution of the fluorescence light induced by proton-gas interactions is measured, allowing us to continuously and non-destructively monitor the proton beam profile. However, the specifications of the beamline require us to carefully control the gas localization by pulsed injection. Radiation hardness of all monitor components and profile distortion caused by space charge effects must also be considered. We will show how to address these challenges and realize a working prototype.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2019-TUPP024  
About • paper received ※ 04 September 2019       paper accepted ※ 09 September 2019       issue date ※ 10 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPP038 Spatial Resolution of an X-ray Pinhole Camera using a Multi-layer Monochromator emittance, synchrotron, simulation, storage-ring 412
 
  • L. Bobb, G. Rehm
    DLS, Oxfordshire, United Kingdom
 
  X-ray pinhole cameras are widely used for beam emittance monitoring at synchrotron light sources. Due to the reduction in beam emittance expected for the many fourth generation machine upgrades, the spatial resolution of the pinhole camera must be improved accordingly. It is well known that there are many contributions to the point spread function. However, a significant contribution arises from diffraction by the pinhole aperture. Given that diffraction is dependent on the spectral distribution of the incident synchrotron radiation, the spatial resolution can be improved by using a monochromatic beam. For optimal performance, the photon energy should be matched to the pinhole aperture size. Here we investigate the spatial resolution of the pinhole camera as a function of photon energy using a multi-layer monochromator.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2019-TUPP038  
About • paper received ※ 04 September 2019       paper accepted ※ 09 September 2019       issue date ※ 10 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPP016 Real-Time Synchronized Calibration and Computing System with EPICS Based Distributed Controls in the TPS XBPM System controls, EPICS, distributed, synchrotron 541
 
  • J.-Y. Chuang, C.K. Chan, C.-C. Chang, C.M. Cheng, Y.T. Cheng, Y.M. Hsiao, Y.Z. Lin, Y.-C. Liu, C. Shueh, Y.C. Yang
    NSRRC, Hsinchu, Taiwan
 
  In synchrotron facilities, X-ray beam position monitor (XBPM) is an important detector for photon beam position monitoring and must be calibrated to ensure reliability and precision. However, light source operating conditions, such as beam orbit, injection and insertion device parameters, etc., can influence the sensitivity and specific weighting of photoemission current from the XBPM diamond blades. In the Taiwan Photon Source (TPS), Experimental Physics and Industrial Control System (EPICS) was utilized to implant an automatic calibration process. By using EPICS, we can ensure a seamless integration between the different front ends (FEs) and direct all data stream into a centralized server, creating a distributed XBPM calibration system. The XBPM performance indicators are analyzed to evaluate the validity of calibration parameters by input/ output controller (IOC) in each FE computing system. This paper will discuss the benefits of implanting this distributed control system into a working environment such as the TPS.
XBPM, TPS, Front end, Distributed XBPM calibration system
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2019-WEPP016  
About • paper received ※ 01 September 2019       paper accepted ※ 08 September 2019       issue date ※ 10 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPP028 Laser Compton Backscattering Source for Beam Diagnostics at the S-DALINAC electron, laser, linac, scattering 575
 
  • M.G. Meier, M. Arnold, J. Enders, N. Pietralla, M. Roth
    TU Darmstadt, Darmstadt, Germany
  • V. Bagnoud
    GSI, Darmstadt, Germany
 
  Funding: Supported in part through the state of Hesse (LOEWE research cluster Nuclear Photonics) and DFG through GRK 2128 ’AccelencE’.
The Superconducting DArmstadt electron LINear ACcelerator S-DALINAC is a thrice-recirculating linac* providing electron beams with energies up to 130 MeV and beam currents up to 20 ’A for a variety of nuclear physics experiments**. It has been operated as Germany’s first energy-recovery linac (ERL) in 2017***. The electron beam is produced either in a thermionic gun or a DC photo-gun using GaAs as cathode material****. A new project foresees to use the S-DALINAC for Laser Compton Backscattering (LCB) to produce a monochromatic high-energy photon beam for nuclear photonics applications in photonuclear reactions and atomics physics experiments. Besides this LCB will be used as an additional diagnostic tool for determining electron beam energy and the energy spread at the third recirculation of the S-DALINAC, when the maximum reachable energy at this point (98.8 MeV) yields a scattered photon energy of 179.7 keV. An overview over the desired laser system for LCB at the S-DALINAC will be given, and simulations for the layout and the estimated output of the Compton-backscattering light source will be presented.
*M. Arnold, Diss., TU Darmstadt (2017)
**N. Pietralla, Nucl. Phys. News 28(2), 4(2018)
***M. Arnold et al., Proc. IPAC’18(4859), 9(2018)
****Y. Poltoratska et al., J.Phys.: Conf. S. 298, 012002(2011)
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2019-WEPP028  
About • paper received ※ 04 September 2019       paper accepted ※ 11 September 2019       issue date ※ 10 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPP037 First Measurements of Cherenkov-Diffraction Radiation at Diamond Light Source radiation, diagnostics, electron, experiment 619
 
  • D.M. Harryman, P. Karataev
    JAI, Egham, Surrey, United Kingdom
  • M. Apollonio, L. Bobb
    DLS, Oxfordshire, United Kingdom
  • M. Bergamaschi, R. Kieffer, M. Krupa, T. Lefèvre, S. Mazzoni
    CERN, Geneva, Switzerland
  • A. Potylitsyn
    TPU, Tomsk, Russia
 
  Cherenkov Diffraction Radiation (ChDR), appearing when a charged particle moves in the vicinity of a dielectric medium with speed faster than the speed of light inside the medium, is a phenomenon that can be exploited for a range of non-invasive beam diagnostics. By using dielectric radiators that emit photons when in proximity to charged particle beams, one can design devices to measure beam properties such as position, direction and size. The Booster To Storage-ring (BTS) test stand at Diamond Light Source provides a 3 GeV electron beam for diagnostics research. A new vessel string has been installed to allow the BTS test stand to be used to study ChDR diagnostics applicable for both hadron and electron accelerators. This paper will discuss the commissioning of the BTS test stand, as well as exploring the initial results obtained from the ChDR monitor.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2019-WEPP037  
About • paper received ※ 04 September 2019       paper accepted ※ 09 September 2019       issue date ※ 10 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THAO01 Cherenkov Diffraction Radiation as a tool for beam diagnostics radiation, electron, experiment, diagnostics 658
 
  • T. Lefèvre, D. Alves, M. Bergamaschi, A. Curcio, O.R. Jones, R. Kieffer, S. Mazzoni, N. Mounet, A. Schlogelhofer, E. Senes
    CERN, Meyrin, Switzerland
  • M. Apollonio, L. Bobb
    DLS, Oxfordshire, United Kingdom
  • A. Aryshev, N. Terunuma
    KEK, Ibaraki, Japan
  • M.G. Billing, Y.L. Bordlemay Padilla, J.V. Conway, J.P. Shanks
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • V.V. Bleko, S.Yu. Gogolev, A.S. Konkov, J.S. Markova, A. Potylitsyn, D.A. Shkitov
    TPU, Tomsk, Russia
  • K.V. Fedorov, D.M. Harryman, P. Karataev, K. Lekomtsev
    JAI, Egham, Surrey, United Kingdom
  • J. Gardelle
    CEA, LE BARP cedex, France
  • K. Łasocha
    Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
 
  During the last three years, the emission of Cherenkov Diffraction Radiation (ChDR), appearing when a relativistic charged particle moves in the vicinity of a dielectric medium, has been investigated with the aim of providing non-invasive beam diagnostics. ChDR has very interesting properties, with a large number of photons emitted in a narrow and well-defined solid angle, providing excellent conditions for detection with very little background. This contribution will present a collection of recent beam measurements performed at several facilities such as the Cornell Electron Storage Ring, the Advanced Test Facility 2 at KEK, the Diamond light source in the UK and the CLEAR test facility at CERN. Those results, complemented with simulations, suggest that the use of both incoherent and coherent emission of Cherenkov diffraction radiation could open up new beam instrumentation possibilities for relativistic charged particle beams.  
slides icon Slides THAO01 [10.658 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2019-THAO01  
About • paper received ※ 09 September 2019       paper accepted ※ 10 September 2019       issue date ※ 10 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)