Keyword: scattering
Paper Title Other Keywords Page
TUPP031 Electron Beam Size Measurements Using the Heterodyne Near Field Speckles at ALBA radiation, experiment, synchrotron, synchrotron-radiation 378
 
  • M. Siano, M.A.C. Potenza
    Universita’ degli Studi di Milano & INFN, Milano, Italy
  • U. Iriso, C.S. Kamma-Lorger, A.A. Nosych
    ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain
  • S. Mazzoni, G. Trad
    CERN, Geneva, Switzerland
  • B. Paroli
    Universita’ degli Studi di Milano, Milano, Italy
 
  Experiments using the heterodyne near field speckle method (HNFS) have been performed at ALBA to characterize the spatial coherence of the synchrotron radiation, with the ultimate goal of measuring both the horizontal and vertical electron beam sizes. The HNFS technique consists on the analysis of the interference between the radiation scattered by a colloidal suspension of nanoparticles and the synchrotron radiation, which in this case corresponds to the hard x-rays (12keV) produced by the in-vacuum undulator of the NCD-Sweet beamline. This paper describes the fundamentals of the technique, possible limitations, and shows the first experimental results changing the beam coupling of the storage ring.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2019-TUPP031  
About • paper received ※ 06 September 2019       paper accepted ※ 10 September 2019       issue date ※ 10 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPP028 Laser Compton Backscattering Source for Beam Diagnostics at the S-DALINAC electron, photon, laser, linac 575
 
  • M.G. Meier, M. Arnold, J. Enders, N. Pietralla, M. Roth
    TU Darmstadt, Darmstadt, Germany
  • V. Bagnoud
    GSI, Darmstadt, Germany
 
  Funding: Supported in part through the state of Hesse (LOEWE research cluster Nuclear Photonics) and DFG through GRK 2128 ’AccelencE’.
The Superconducting DArmstadt electron LINear ACcelerator S-DALINAC is a thrice-recirculating linac* providing electron beams with energies up to 130 MeV and beam currents up to 20 ’A for a variety of nuclear physics experiments**. It has been operated as Germany’s first energy-recovery linac (ERL) in 2017***. The electron beam is produced either in a thermionic gun or a DC photo-gun using GaAs as cathode material****. A new project foresees to use the S-DALINAC for Laser Compton Backscattering (LCB) to produce a monochromatic high-energy photon beam for nuclear photonics applications in photonuclear reactions and atomics physics experiments. Besides this LCB will be used as an additional diagnostic tool for determining electron beam energy and the energy spread at the third recirculation of the S-DALINAC, when the maximum reachable energy at this point (98.8 MeV) yields a scattered photon energy of 179.7 keV. An overview over the desired laser system for LCB at the S-DALINAC will be given, and simulations for the layout and the estimated output of the Compton-backscattering light source will be presented.
*M. Arnold, Diss., TU Darmstadt (2017)
**N. Pietralla, Nucl. Phys. News 28(2), 4(2018)
***M. Arnold et al., Proc. IPAC’18(4859), 9(2018)
****Y. Poltoratska et al., J.Phys.: Conf. S. 298, 012002(2011)
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2019-WEPP028  
About • paper received ※ 04 September 2019       paper accepted ※ 11 September 2019       issue date ※ 10 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)