Keyword: space-charge
Paper Title Other Keywords Page
TUPP022 Development of the Calculation Method of Injection Beam Trajectory of RIKEN AVF Cyclotron with 4D Emittance Measured by the Developed Pepper-Pot Emittance Monitor cyclotron, emittance, injection, ECR 346
 
  • Y. Kotaka, N. Imai, Y. Ohshiro, Y. Sakemi, S. Shimoura, H. Yamaguchi
    CNS, Saitama, Japan
  • A. Goto, M. Kase, T. Nagatomo, T. Nakagawa, J. Ohnishi
    RIKEN Nishina Center, Wako, Japan
  • K. Hatanaka
    RCNP, Osaka, Japan
  • H. Muto
    Suwa University of Science, Chino, Nagano, Japan
 
  The Center for Nuclear Study, the University of Tokyo and RIKEN Nishina Center have been developing the AVF Cyclotron system at RIKEN. One of the important developments is to improve the transport system of the injection beam line. The transport efficiencies tend to decrease as beam intensities increase. To solve this problem, we developed the calculation method to trace a beam trajectory with a four-dimensional (4D) beam emittance measured by pepper-pot emittance monitor (PEM) as initial value. The reason for using the 4D beam emittance is that the transport system has rotating quadrupole magnets and solenoid coils, and that the space charge effect can be introduced. The beams through a pepper-pot mask can be detected on the potassium bromide fluorescent plate inclined 45 degree to the beam to be recorded by digital camera using developed PEM. We compared the calculated beam trajectory with the measurement of other beam diagnostics and quantified the degree of fit. It has been found that the degree of fit is improved by changing fiducial points on the fluorescent plate and optimizing the thickness of the fluorescent agent and the exposure time and gain of the digital camera.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2019-TUPP022  
About • paper received ※ 04 September 2019       paper accepted ※ 10 September 2019       issue date ※ 10 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPP037 Studies of the Time Structure of Ionisation Beam Profile Measurements in the ISIS Extracted Proton Beamline simulation, proton, software, electron 407
 
  • C.C. Wilcox, W.A. Frank, A. Pertica, R.E. Williamson
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
 
  Ionisation Profile Monitors (IPMs) are used at the ISIS neutron and muon source to perform non-destructive transverse beam profile measurements. An in-house particle tracking code, combined with 3D CST modelling of the electric fields within the monitors, has been used to improve understanding of the various error sources within the IPMs, and shows close agreement with profile measurements in the synchrotron. To allow for detailed benchmarking studies, an IPM has been installed in Extracted Proton Beamline 1 (EPB1), enabling comparison with secondary emission (SEM) grid measurements. However, the IPM measurements taken in EPB1 show increased levels of profile broadening at operational beam intensities, which are not reproduced by SEM measurements or simulation. To investigate these differences, studies of the time structure of measured profiles are being performed. This paper details the development of new, high-speed multichannel data acquisition electronics, required to perform these studies. Resulting measurements are discussed, along with an analysis of the data’s time structure and a comparison with that predicted by the IPM code.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2019-TUPP037  
About • paper received ※ 04 September 2019       paper accepted ※ 11 September 2019       issue date ※ 10 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)