Keyword: target
Paper Title Other Keywords Page
MOPP005 Radiation hardness investigation of Zinc oxide fast scintillators with relativistic heavy ion beams. radiation, heavy-ion, detector, site 70
 
  • P. Boutachkov, A. Reiter, M. Saifulin, B. Walasek-Höhne
    GSI, Darmstadt, Germany
  • E.I. Gorokhova
    GOI, St Petersburg, Russia
  • P. Rodnyi, I.D. Venevtsev
    SPbPU, St. Petersburg, Russia
 
  At GSI ion beams of many elements, from H up to U, are produced with energy as high as 4.5 GeV/u with the SIS-18 synchrotron. For absolute beam intensity and micro-spill structure measurements a BC400 organic scintillator is used. Due to the low radiation hardness of this material, alternative inorganic scintillators like ZnO:Ga and ZnO:In were investigated. The properties and possible application of these novel radiation hard fast scintillators will be discussed. Their response to Sn, Xe and U ion beams will be reported.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2019-MOPP005  
About • paper received ※ 04 September 2019       paper accepted ※ 09 September 2019       issue date ※ 10 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPP042 Beam Diagnostics for the Multi-MW High Energy Beam Transport Line of DONES diagnostics, radiation, beam-diagnostic, linac 201
 
  • I. Podadera, A. Ibarra, D. Jiménez-Rey, J. Mollá, C. Oliver, R. Varela, V. Villamayor
    CIEMAT, Madrid, Spain
  • O. Nomen, D. Sánchez-Herranz
    IREC, Sant Adria del Besos, Spain
 
  Funding: Work carried out within the framework of the EUROfusion Consortium and funded from the Euratom research and training programme 2014-2018 and 2019-2020 under grant agreement No 633053.
In the frame of the material research for future fusion reactors, the construction of a simplified version of the IFMIF plant, the so-called DONES (Demo-Oriented Neutron Early Source), is under preparatory phase to allow materials testing with sufficient radiation damage for the new design of DEMO. The DONES accelerator system will deliver a deuteron beam at 40 MeV, 125 mA. The 5 MW beam will impact onto a lithium flow target to form an intense neutron source. One of the most critical tasks of the accelerator is the beam diagnostics along high energy beam transport, especially in the high radiation areas close to the lithium target. This instrumentation is essential to provide the relevant data for ensuring the high availability of the whole accelerator system, the beam characteristics and machine protection. Of outmost importance is the control of the beam characteristics impinging on the lithium curtain. Several challenging diagnostics are being designed and tested for that purpose. This contribution will report the present status of the design of the beam diagnostics, focusing on the high radiation areas of the high energy beam transport line.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2019-MOPP042  
About • paper received ※ 04 September 2019       paper accepted ※ 07 September 2019       issue date ※ 10 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUAO04 Commissioning of the ARIEL E-LINAC Beam Loss Monitor System MMI, electron, dipole, linac 239
 
  • M. Alcorta, A.D. D’Angelo, D. Dale, H. Hui, B. Humphries, S.R. Koscielniak, K. Langton, A. Lennarz, R.B. Nussbaumer, T. Planche, M. Rowe, S.D. Rädel
    TRIUMF, Vancouver, Canada
 
  The commissioning of the Advanced Rare Isotope & Electron Linac (ARIEL) facility at TRIUMF is underway. The 30 MeV e-linac has successfully been commissioned to 100 W, and to further increase the power to 1 kW the beam loss monitor system (BLM) for fast Machine Protection must be fully operational. There are currently two types of BLMs employed in the e-linac; long-ionization chambers (LIC) and scintillators, consisting of a small BGO coupled to a PMT. A front-end beam loss monitor board was designed at TRIUMF to meet the strict requirements of the BLMs: a trip of the beam occurs on 100 nC in 100 ms of integrated beam loss, and the trip must occur in < 10 us. This contribution will report on the status of the 1 kW BLM system commissioning and will give an outlook as the power is increased to the full 300 kW.  
slides icon Slides TUAO04 [14.621 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2019-TUAO04  
About • paper received ※ 04 September 2019       paper accepted ※ 07 September 2019       issue date ※ 10 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUBO03 Challenges in Continuous Beam Profile Monitoring for MW-Power Proton Beams proton, extraction, monitoring, experiment 247
 
  • M.L. Friend
    KEK, Ibaraki, Japan
 
  Continuous beam profile monitoring of the high-power proton beam is essential for protection of beamline equipment, as well as for producing high-quality physics results, in fixed-target extraction beamlines. Challenges in continuous profile monitoring include degradation of materials after long-term exposure to the proton beam, as well as beam loss due to that material intercepting the beam, which can additionally cause activation of nearby equipment. An overview of various profile monitoring techniques used in high-power neutrino extraction beamlines, issues faced so far at beam powers up to several hundred kW, and some possible future profile monitoring solutions for MW-class beamlines will be shown.  
slides icon Slides TUBO03 [13.146 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2019-TUBO03  
About • paper received ※ 09 September 2019       paper accepted ※ 11 September 2019       issue date ※ 10 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUCO02 Experimental Observation of Submillimeter Coherent Cherenkov Radiation at CLARA Facility radiation, experiment, electron, detector 256
 
  • K.V. Fedorov, P. Karataev, A.N. Oleinik
    JAI, Egham, Surrey, United Kingdom
  • K.V. Fedorov, A. Potylitsyn, A. Potylitsyn
    TPU, Tomsk, Russia
  • P. Karataev
    Royal Holloway, University of London, Surrey, United Kingdom
  • A.N. Oleinik
    BelSU, Belgorod, Russia
  • T.H. Pacey, Y.M. Saveliev
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • T.H. Pacey
    UMAN, Manchester, United Kingdom
  • Y.M. Saveliev
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  Nowadays, the method of longitudinal beam profile diagnostic based on transition radiation (TR) spectrum is well studied [1] and is constantly being applied, while using of coherent Cherenkov radiation (CCR) is a modern task that opens up new possibilities in this area [2]. In current work we conducted experiments on CCR generation, observation and it further spectral analysis at 0.1-30 THz spectral range. All experimental work was at CLARA (beam area 1) facility (~50 MeV beam energy at up to 10 Hz pulse repetition rate with sub-ps bunch length). Inside of vacuum chamber we developed movable platform where both VCR and TR target were placed, which is allows us to observe both effects during one accelerator run. For spectral analysis we used Martin-Pupplet interferometer as it provides higher signal to noise ratio and allows us to perform instabilities normalisation. As a result we will demonstrate a selection of interferograms and spectrums (as well as reconstructed longitudinal beam profiles) for different machine setups and distances between charged particle beam and Cherenkov target. By using mathematical analysis it has been shown that CLARA bunch length was about 1.2 ps.  
slides icon Slides TUCO02 [22.952 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2019-TUCO02  
About • paper received ※ 03 September 2019       paper accepted ※ 10 September 2019       issue date ※ 10 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPP008 Thermal Simulations of Optical Transition Radiation Targets radiation, linac, emittance, simulation 292
 
  • J. Pforr, M. Arnold, N. Pietralla
    TU Darmstadt, Darmstadt, Germany
 
  Funding: Work supported by DFG through GRK 2128
The recirculating electron linac S-DALINAC* provides beams with currents up to 20 µA and energies up to 130 MeV. It is planned to extend the beam diagnostics by adding multiple emittance measurement systems in order to investigate the emittance evolution along the beamline. The emittance measurement is based on the quadrupole scan technique and utilizes the existing quadrupoles and newly built optical transition radiation targets. As the targets are heated by the beam and destruction must be avoided, simulations of the thermal behaviour of the target were conducted. In particular, the dependence of the target temperature on the target design, but also variable parameters as beam spot size and current were investigated. This contribution will present these parameter studies.
* N. Pietralla, Nuclear Physics News, Vol. 28, No. 2, 4 (2018)
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2019-TUPP008  
About • paper received ※ 03 September 2019       paper accepted ※ 08 September 2019       issue date ※ 10 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPP012 Image of the Transverse Bunch Profile via COTR electron, radiation, laser, detector 308
 
  • A. Potylitsyn, T. Gusvitskii, L.G. Sukhikh
    TPU, Tomsk, Russia
  • G. Kube, A.I. Novokshonov
    DESY, Hamburg, Germany
 
  Funding: This work was supported by the grant of the Russian Ministry of Science # 3/1903.2017.
Transverse beam profile diagnostics based on Optical Transition Radiation (OTR) is a routine technique at most modern electron linear accelerators (linacs) which is difficult to implement for FEL beams [*] and LWPA accelerators [**]. The reason is that a standard OTR beam profile monitor with a few micrometers space resolution cannot be used for measurements of ultrashort bunch profiles due to coherent effects in the OTR emission process [***]. We have developed an approach which allows calculating the propagation of coherent optical transition radiation (COTR) through a standard optical system consisting of a focusing lens and a spatial resolving detector placed in the image plane. Strict summation of the OTR fields emitted coherently by electrons inside the bunch and its focusing onto the detector plane allows obtaining a COTR image of the bunch profile. With the assumption of a Gaussian transverse bunch profile it is shown that the resulting image has a typical "ring" shape, characteristics of which are depended on the bunch transverse rms size and optical system parameters.
* E. Saldin, et al., "The Physics of Free Electron Lasers", Springer-Verlag, 2010.
** N. Bourgeois, et al., AIP Conf. Proc., 1507, 258 (2012).
*** H. Loos, R. Akre, et al., SLAC-PUB-13395 (2008).
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2019-TUPP012  
About • paper received ※ 04 September 2019       paper accepted ※ 10 September 2019       issue date ※ 10 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPP023 Two-dimensional Beam Profile Monitor for Alpha Emitter electron, injection, dipole, beam-transport 350
 
  • K.S. Tanaka, K. Harada, M. Itoh, H. Kawamura, A. Terakawa, A. Uchiyama
    CYRIC, Sendai, Japan
  • T. Hayamizu, H. Nagahama, N. Ozawa, Y. Sakemi
    CNS, Saitama, Japan
 
  We developed two-dimensional beam profile monitors for alpha-emitters along with other larger number of ions to measure the permanent electric dipole moment of the electron using francium atoms at CYRIC in Tohoku university. Francium is produced by the fusion reaction between the oxygen beam from the cyclotron accelerator and gold target, and a far larger number of other ions such as fold or potassium are also emitted from the target. Thus it was difficult to measure the beam profile of francium hidden by these ions. We installed two beam profile monitor consisted of the micro-channel plate and phosphor screen. If we stop the beam after the beam injection to the monitor in sufficient time, we can only observe the fluorescence of the alpha particle emitted by francium atoms on the surface of the plates. By using this monitoring system, we improved the beam transport efficiency by several times and improved beam purity of francium with Wien filter.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2019-TUPP023  
About • paper received ※ 04 September 2019       paper accepted ※ 07 September 2019       issue date ※ 10 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPP025 The Installation and Application of Multi-wire Profile Monitor for PBW in CSNS proton, experiment, simulation, neutron 358
 
  • M. Meng
    DNSC, Dongguan, People’s Republic of China
  • F. Li, P. Li, R.Y. Qiu, A.X. Wang, T. Yang
    IHEP CSNS, Guangdong Province, People’s Republic of China
  • T.G. Xu, Zh.H. Xu, L. Zeng
    IHEP, Beijing, People’s Republic of China
 
  To monitor the size and position of 1.6 Gev proton beam in front of proton beam window(PBW) of China spallation neutron source (CSNS), one multi-wire profile monitor (MWPM) is designed and installed with PBW. It can bear the heat caused by beam and generate signal to electronic in local station. We can monitor the situation of beam and protect PBW using MWPM.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2019-TUPP025  
About • paper received ※ 04 September 2019       paper accepted ※ 08 September 2019       issue date ※ 10 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPP032 J-PARC Test of ESS Beam on Target Diagnostics Prototypes Aperture Monitor and GRID electron, proton, HOM, radiation 382
 
  • C.A. Thomas, J. Etxeberria, H. Kocevar, J.P.S. Martins, T.J. Shea
    ESS, Lund, Sweden
  • A.J. Johansson, M. Törmänen
    Lund University, Lund, Sweden
  • S.I. Meigo, M. Ooi
    JAEA/J-PARC, Tokai-mura, Japan
  • H. Niu, B. Zhang
    IMP/CAS, Lanzhou, People’s Republic of China
 
  The ESS high power beam will be delivered to the spallation target with high degree of control. To this end, we have designed a suite of instruments which provide measurement of the beam characteristics in a drift space a few meters from the target. Two of these instruments, the APTerure Monitor (APTM) and the GRID are presented. The APTM is designed to measure the fraction of beam going through the defined aperture; its time acquisition ranges from intra-pulse at µs sampling rate to many pulses over seconds. The GRID measures the projected horizontal and vertical profiles, sampling the pulse at 1MHz. A prototype of these two instruments has been designed and installed in the 3NBT dump line of J-PARC. They are designed to test functionality of these instruments in a similar environment as ESS. The 3NBT Dump line at J-PARC presents such an environment. In the second part of the paper we report the results and the measurements performed to test the prototypes. Before concluding we will discuss the results and propose improvements to the instruments final design.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2019-TUPP032  
About • paper received ※ 04 September 2019       paper accepted ※ 10 September 2019       issue date ※ 10 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPP035 Development of Modular Spare Parts for the Profile and Position Monitors of the 590 MeV Beam Line at HIPA shielding, pick-up, vacuum, simulation 397
 
  • R. Dölling, D.C. Kiselev, F. Marcellini, K.M. Zehnder
    PSI, Villigen PSI, Switzerland
  • D. Berisha, J. Germanovic, K.M. Zehnder
    ABBTS, Baden, Switzerland
 
  A new generation of monitor plugs is under development for the ageing wire profile monitors and beam position monitors which are inserted into massive shielding of the 590 MeV proton beam line at HIPA. The modular mechanical design, aspects of handling, vacuum compatibility, radiation hardness, shielding, cabling and monitor environment are discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2019-TUPP035  
About • paper received ※ 04 September 2019       paper accepted ※ 10 September 2019       issue date ※ 10 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPP036 Performance of an In-Air Secondary Emission Grid Profile Monitor at the ISIS Neutron and Muon Source focusing, simulation, neutron, synchrotron 402
 
  • D.W. Posthuma de Boer, C. Bovo, H.V. Cavanagh, B. Jones, A.H. Kershaw, A. Pertica
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
 
  The ISIS neutron and muon source, located in the UK, consists of an H linear accelerator, a rapid cycling proton synchrotron and extraction lines to two target stations. A project is currently under way to replace the target assembly of the First Target Station (TS1) in order to secure its continued operation and improve operational flexibility. In addition to a number of other diagnostic tools, a new secondary emission (SEM) grid profile monitor is expected to be located within the helium atmosphere of the new target assembly. To investigate the performance of an out-of-vacuum SEM grid, a prototype monitor was positioned in-air between a beam exit window and a dump. Profile measurements taken with this monitor are presented, including tests at a range of bias voltages with a fast data acquisition system to investigate secondary signal sources.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2019-TUPP036  
About • paper received ※ 04 September 2019       paper accepted ※ 07 September 2019       issue date ※ 10 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEBO04 Enhancement of the S-DALINAC Control System with Machine Learning Methods network, controls, linac, electron 473
 
  • J.H. Hanten, M. Arnold, J. Birkhan, C. Caliari, N. Pietralla, M. Steinhorst
    TU Darmstadt, Darmstadt, Germany
 
  Funding: *Work supported by DFG through GRK 2128
For the EPICS-based control system of the superconducting Darmstadt electron linear accelerator S-DALINAC**, supporting infrastructures based on machine learning are currently developed. The most important support for the operators is to assist the beam setup and controlling with reinforcement learning using artificial neural networks. A particle accelerator has a very large parameter space with often hidden relationships between them. Therefore neural networks are a suited instrument to use for approximating the needed value function which represents the value of a certain action in a certain state. Different neural network structures and their training with reinforcement learning are currently tested with simulations. Also there are different candidates for the reinforcement learning algorithms such as Deep-Q-Networks (DQN) or Deep-Deterministic-Policy-Gradient (DDPG). In this contribution the concept and first results will be presented.
**N. Pietralla, Nuclear Physics News, Vol. 28, No.2, 4 (2018)
 
slides icon Slides WEBO04 [2.073 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2019-WEBO04  
About • paper received ※ 03 September 2019       paper accepted ※ 09 September 2019       issue date ※ 10 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)